

Geschäftsführer: Zoran Veselic, Kazuhisa Kamiyama ·
Amtsgericht Köln, HRB 51649

Pandoras Box V8 – Introduction to custom shader FXs

This how-to guide is targeted to developers with experience in HLSL shader programming and does
not aim to explain how to write shaders in general. It shall provide a brief overview of specific details
which are needed for Pandoras Box shaders.

The following pages will highlight some topics to better understand the provided shader examples.

As the number of video layers isn’t limited anymore within V8, we are happy to also explain how to
load external textures to create much more interesting shaders or simply combine multiple videos
on a single layer as an overlay effect.

Christie Digital Systems Germany GmbH
Richard-Byrd-Strasse 19
50829 Cologne
Germany

To whom it may concern,

+ 49 221 99 512-0

pandorasbox@christiedigital.com

christiedigital.com

August 2021

https://www.christiepandorasbox.com/support/download-center/#/cat-11/cat-63/file-386

2 | P a g e
V2 – 08/21

Contents
General information ... 3

Editing and loading custom FXs .. 4

Basic shader structure... 6

User interface description .. 7

Shader code .. 9

Example code “Media Overlay Add” ... 10

Specific Pandoras Box variables .. 11

3 | P a g e
V2 – 08/21

General information

Custom shaders for Pandoras Box need to be in the following format:

Shader language: HLSL
Pixel shader: 5.0
File format: XML
File extension: .ccfx (custom Christie FX)

Pandoras Box loads shaders and textures from the following folders:

C:\Program Files\Christie\Pandoras Box 8.x.x\data\fx\shader

• custom shaders

C:\Program Files\Christie\Pandoras Box 8.x.x\data\fx\config

• special configurations like dropdown menus
• thumbnails for dropdown menus

C:\Program Files\Christie\Pandoras Box 8.x.x\data\fx\stockTextures

• fixed stock textures used inside a shader

4 | P a g e
V2 – 08/21

Editing and loading custom FXs

We recommend using Notepad++ as your editor for shaders due to multiple reasons.

Custom FXs are stored in the installation path of Pandoras Box which is a protected folder by default.
You will therefore need administrator rights to change files inside it. Notepad++ is able to be
launched in Administrator mode so you can directly edit and save files in the protected environment.

Furthermore, the application is very useful due to its syntax highlighting.
Depending on the area you are working in, we recommend to set Notepad++ to either XML, when
working on the user interface elements...

...or C when actually coding the shader.

Choose Language from the menu and select the desired language accordingly.

5 | P a g e
V2 – 08/21

When working on shaders and trying out their visual results in Pandoras Box, you can reload shaders
after editing those without the need of restarting the application.

Simply navigate to the according folder within the Aeon FX tab inside Pandoras Box and choose
Refresh and Reload FXs from the folder’s context-menu.

Please note that only the shader code itself can be reloaded. Changes to user interface elements
require the FX to be deleted and reapplied to the layer.

In case of errors in your code, Pandoras Box will report the compile error with a popup and tell the
line of the issue. The lines refer to the shader code only, not the absolute line number within the
XML file.

6 | P a g e
V2 – 08/21

Basic shader structure

As mentioned above, the custom shader code is wrapped into an XML structure and the layout is
depicted below:

<?xml encoding=”utf-8” ?>
<descripFx type = “fxShader” name = “FX Name” separator = “FX” rev = “2” forceLead = “false”>
 <descripInterface>
 // Define user interface elements here.
 </descripInterface>
 <descripShader type = “ps_5_0”>
 <pass>
 <vertexSet scaleW="0.9" scaleH="0.9"/>
 <blendMode>
 <color blendOp="ADD" srcBlend="ONE" destBlend="ZERO"/>
 <alpha blendOp="ADD" srcBlend="ONE" destBlend="ZERO"/>
 </blendMode>
 <shaderCode>

 //Shader code is placed here for first render pass.
 </shaderCode>
 </pass>
 <pass repeats=”5”>
 <shaderCode>
 //Shader code is placed here for following 5 render passes.
 </shaderCode>
 </pass>
 </descripShader>
</descripFx>

Replace FX Name for the desired shader name which shall be displayed in Pandoras Box.

rev=”2” needs to be set in order to use the depicted format of render passes

forceLead=”true” needs to be used when an interim texture shall be rendered. When lookups are
required in an FX, all other FXs prior to it in the chain will then be rendered to allow the current FX to
sample the combined result of all prior FXs. Default is “false” and shall only be used when needed.

<pass> encloses the shader code per render pass in the order of processing. The tag only needs to be
set for multi-pass shaders.

<vertexSet scaleW/H> scales the texture to the given percentage

<blendMode> allows for different blend modes to be used within the shader for color and alpha

7 | P a g e
V2 – 08/21

User interface description

The <descripInterface> defines the elements which are made available to the user or are used in the
background. Max values are defined along with channel width, names, defaults and other values.

The below definition will result into the following user interface representation:

8 | P a g e
V2 – 08/21

These definitions have been made:

The modules can be defined with the following descriptions:

• type UI element type
o paramScalarValue fader
o paramList dropdownlist
o paramResMedia texture sampler

• upper max value
• lower min value
• hlslType HLSL variable type
• name name of the parameter within the UI
• hlslName name of the shader code variable linked to the parameter

 (needs specific naming for textures and samplers - see
 chapter “variables”)

• default default value when initialized or reset
• artNetWidth number of assigned DMX channels
• normalize = “true” normalizes values to 0..1 range

 (e.g.: 0..255 becomes 0..1 with 128 = 0.5)
• linkage=”open” creates new link group
• linkage=”add” adds parameter to the last opened link group
• avoidGuiLoad = “always” parameter will not be visible in UI

(Useful to load textures that users shall not assign.)
• usage links engine parameters to shader parameters

Best practice:

There should always be a “Mix” fader set up like in the example code in order to be able to visually
deactivate the shader.

Three faders in a row called Red, Green and Blue will automatically be converted into a color picker.

Variables names must not start with pb as those values are reserved for internal purposes.

9 | P a g e
V2 – 08/21

Shader code

Pixel shaders work on a per pixel basis. This means a pixel shader code runs for every pixel in the
image. Assuming an HD output at 60 Hz means executing the code 1920*1080*60 = 124.416.000
times per second.

The shader code by itself has knowledge of:

• the position of the pixel being calculated
• the original pixel color being calculated
• the shader pass

Since the HLSL code is embedded into an XML structure, the characters “<” and “>” cannot be used
and must therefore be replaced with > and < when being used in the code.

The following shader code example also uses the replacements.

10 | P a g e
V2 – 08/21

Example code “Media Overlay Add”

line 9: hlslName must be set as myVariableNameTexSampler in order to link texture
 and sampler which are separately declared in lines 29-30

lines 10-12: must be included to receive information from a sampled Pandoras Box resource

line 18: allows to use the SampleCorrected function within the shader code

lines 20-27: declaration of variables used in the UI description

lines 29-30: the variables must be matching the naming of line 9, but as separate variables

line 32: each FX needs to have an export function in which the main program runs

line 42: SampleCorrected allows for using different texture formats (compressed or
 uncompressed) within a single shader as it corrects the original format

The export function has an output of type float4 called color which is the shader’s return value.

The function also has 2 Input values. uv is the position of the currently processed pixel and col is its
current color value.

11 | P a g e
V2 – 08/21

Specific Pandoras Box variables

The following Pandoras Box variables can be used to make the most of your shaders:

Name Type Usage
pbProjectStartTime float4 elapsed time since project start

x: only to be used with below formula
y: only to be used with below formula
z: seconds
w: milliseconds

Max: 16776216

elapsedTimeMs = x + y * Max

pbCurrentTexDimension float4 size of current DirectX texture in pixels
x: width
y: height

pbCurrentTexCoordMod float4 factor for UV coordinates

pbMainMediaDimension float4 size of main media in pixels
x: width
y: height

pbCurrentTex
pbCurrentSampler

Texture2D
SamplerState

Samples current texture including changes
from previous effects.

must be used with:

- „forceLead = true“

pbCurrentTex.Sample(pbCurrentSampler, uv *
pbCurrentTexCoordMod.xy)

pbRandomTex
pbRandomSampler

Texture2D
SamplerState

samples a random texture

pbRandomTex.Sample(pbRandomSampler, uv)

pbShaderPass float returns current render pass

	General information
	Editing and loading custom FXs
	Basic shader structure
	User interface description
	Shader code
	Example code “Media Overlay Add”
	Specific Pandoras Box variables

